In Process REST Server for SoftPL.C®
Runtime

Version 1.6

Table of Contents

1. Terms of Use
2. Overview
2.1. Introduction
2.2. Concepts
2.3. Features
2.4. Limitations
2.5. Requirements
2.6. Terminology
3. Web TLM Configuration
3.1. Configuration Steps
3.1.1. Module Installation
3.1.2. Enable Web TLM
Save Enabled Modules
3.1.3. Configure TLM
WEBL.LST Configuration Editor Usage
WEBL.LST Configuration File Structure
4. API Specification
4.1. Read Functions (HTTP GET & POST Methods)
4.1.1. GET Method
Discover Available Files
Read All Datatable Files
Single File Read
CURL Examples
4.1.2. POST Method
POST Body Format
CURL Examples
4.2. Write Functions
4.2.1. PUT Method
PUT Body Format
Response Format
CURL Examples
PUT Body Format (Word level)
4.3. Tag Substitution

N U1 U1 U R R R WNNN NN DN R

o e T e Y S S e S e N e T e e = = T = S SO)
D U1 U1 U s R R W NN N R R R R R, O

Chapter 1. Terms of Use

Because of the variety of uses of the information described in this manual, the users of, and those
responsible for applying this information must satisfy themselves as to the acceptability of each
application and use of the information. In no event will SoftPL.C Corporation be responsible or
liable for its use, nor for any infringements of patents or other rights of third parties which may
result from its use.

SOFTPLC CORPORATION MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

SoftPLC Corporation reserves the right to change product specifications at any time without notice.
No part of this document may be reproduced by any means, nor translated, nor transmitted to any
magnetic medium without the written consent of SoftPL.C Corporation.

SoftPLC, and TOPDOC are registered trademarks of SoftPL.C Corporation.
© Copyright 2020 SoftPLC Corporation, ALL RIGHTS RESERVED

First Printing May, 2025

Latest Printing = May, 2025

SoftPLC Corporation
25603 Red Brangus Drive
Spicewood, Texas 78669

USA Telephone: 1-800-SoftPLC
WW Telephone: 512/264-8390
URL: http://softplc.com

Email: support@softplc.com

http://softplc.com
mailto:support@softplc.com

Chapter 2. Overview

2.1. Introduction

The SoftPLC runtime is control software developed by SoftPLC Corporation. It is is embedded into
all SoftPLC controllers and gateways. This document describes how to configure and use the
WEB.TLM add-on module for the SoftPLC runtime. This module enables the controller to be a web
server, and by result, provides a REST API server.

2.2. Concepts

The SoftPLC runtime engine software supports TLMs (TOPDOC Loadable Modules), which are
extensions to SoftPLC. A TLM may be loaded either as a DRIVER or as a MODULE. The difference
between a DRIVER and a MODULE is that a DRIVER is called once per SoftPLC scan cycle, and
optionally an additional number of times per scan. A MODULE is only called when the control
program decides to call it and not as an inherent part of the scan. TLMs are made known to SoftPLC

in a MODULES.LST file which may be edited by TOPDOC NexGen by traversing to: PLC » Modules.

This document describes a server that is both a web server and a REST (API) server that is available
for the SoftPLC runtime environment.

2.3. Features

* Web server functionality which can serve files and directory content.
* REST API server as described below.
* REST requests can be made using either datatable addresses or tagnames.

» The API supports both simple and scattered reads and writes. Scattered operations are done on
non-contiguous datatable locations and can result in fewer transactions and thereby improved
efficiency.

» This TLM, like all TLMs, runs in the same process as the SoftPL.C runtime and therefore has
direct memory access to the SoftPLC runtime datatable.

* Any client which can issue HTTP requests can interoperate with this server. That includes
browser Javascript, Python, n8n, etc.

2.4. Limitations

» The total number of supported HTTP connections from clients is over 50.

2.5. Requirements

» SoftPLC version 5.1 or greater

* TOPDOC NexGen version 5.1 or greater

2.6. Terminology

The HTTP protocol establishes several request types, sometimes called verbs, which are used to
read and write data between a client and server. REST servers are fairly consistent in their use of
these request types. The request types are GET, POST, PUT. GET is used for reads. POST is similar to
GET, except that the description of the desired data to be read can be larger and is contained in the
body of the request rather than in the URL. PUT is used to write data to the server.

XML is a text format that is used in REST servers. include link to XML tutorial.

In our case, XML is used to format POST and PUT request bodies, and is also used in the response to
a GET.

Chapter 3. Web TLM Configuration

3.1. Configuration Steps

Module Installation - Ensure the TLM is installed in the SoftPLC
Enable TLM - Configure SoftPLC to load the TLM at startup

Configure TLM - Edit the driver configuration file WEB.LST for your desired communications

= W Mo

Configure other Device(s) — Following vendor instructions, set up the other device(s) to
communicate with the SoftPLC (not described in this document)

3.1.1. Module Installation

The TLM is a file named web.tlm.so and the configuration file is named WEB.LST. If purchased,
these files are pre-installed on the SoftPL.C CPU or Gateway in the /SoftPLC/tlm directory.

Web TLM Option

The Web TLM is an optional add-on at time of purchase. Please contact SoftPLC Support to
verify installation (or procure a copy) of the Web TLM for a particular device. Please have
serial number of the specific device at the ready. Field installation of the Web TLM is possible.

3.1.2. Enable Web TLM

The TOPDOC NexGen Manual and help system describe how to use the Module

O Editor to enable and configure TLM’s. The following sections assume previous
- knowledge of TOPDOC NexGen’s Module Editor, and other SoftPLC configuration
procedures.

To enable the TLM, use TOPDOC NexGen to traverse to PL.C » Modules and check Use for WEB.TLM.
There are no Options for this TLM.

rLocal PLC Defs ————— | [KO ad [y [=1 T G TV £

SOFTPLC Define || Network || Module || 0O.N.E. || Startup
rSoft Modules & I/O Drivers

Use Type Name Options
DRIVER |[MIUDBSLAV. TLV

DRIVER |[RIO.TLM

DRIVER |RIOMASTER.TLM
DRIVER [RIOSLAVE.TLM
DRIVER |SENDMAIL.TLM
MODULE |SLC.TLM
DRIVER |[SMART.TLM buslimit=1
MODULE |SPLCMISC.TLM
DRIVER |TAGWELL.TLM
MODULE WEB.TLM
|DRIVER YOURDVR.TLM ioport=380

OROOoODOoOoODOog

| Configure ” Help

rModule Detail

Purpose Webserver and REST service in SoftPLC

Full Path /SoftPLC/tIM/WEB.TLM
~Your notes on this Module

Add

Remove

Rename

Clone

Detect on Net

Upload

Download

Edit Remotely Remote

Remote Console | ” Send | []Browse

SFTP Client Local
Help | Load ” Save | Browse |

Save Enabled Modules

The [Save] button will write the MODULE.LST file to the development system’s disk.
The [Send] button will write the MODULE.LST file to the runtime system’s disk.

@ It is good practice to both [Save] and [Send] the edits, this way both your
- development system and the SoftPLC get a copy.

Whenever you [Send] a modified list of modules and/or their configuration files,
@ you must restart (or power cycle) the SoftPLC in order for the changes to take
effect.

3.1.3. Configure TLM

The configuration file for the WEB TLM is a text file called /SoftPLC/tlm/WEB.LST.

WEB.LST Configuration Editor Usage

With the WEB.TLM line highlighted/selected, click the [Configure] button below the list of
modules to load the Configuration Editor for the WEB.LST file.

rLocal PLC Defs —————— || KoL s d i [ERET T

SOFTPLC | Define || Network || Module || 0O.N.E. || Startup
rSoft Modules & I/O Drivers
Use Type Name Options
MODULE |LEDS.TLM
MODULE WEB.TLM
MODULE ADAM4000.TLM |COMPORT=5 BAUD=384 TIMEOUT=20 CHECKS...
DRIVER |CIFX_TCP.TLM
MODULE |[COMGENIUS.TLM
MODULE DTDISK.TLM
DRIVER |[ENRON_MODTC...
DRIVER |[ETHER_IP.TLM
MODULE FLOAT80.TLM
DRIVER |HILCIFX.TLM
DRIVER _[HII SCHER.TILM

| Configure N || Help

0O0000000O0|E/E

rModule Detail

Purpose Webserver and REST service in SoftPLC

Full Path /SoftPLC/tIM/WEB.TLM
~Your notes on this Module

Add

Remove

Rename

Clone

Detect on Net

Upload

Download

Edit Remotely Remote

Remote Console | Fetch ” Send | [IBrowse

SFTP Client Local
Help | Load ” Save | Browse |

A template file is included in the SoftPLC. When connected to the SoftPLC, use the [Fetch] to load
the template file into the Configuration Editor.

PLC SOFTPLC's WEB.LST

Load Save | Fetch ‘

Configuration file for SoftPLC WEB TLM. b
Anything from # to end of line is a comment.

Set the document root for the web server. This is the location from where HTML
and other files will be served. Use a full system path,
docroot = fvar/www

Enable or disable PUT request authentication. If disabled, the client auth

option below is not used. If enabled, authentication is done via the selected
client_auth method. If this is set to no, then client auth has no effect.
enable put auth = no # yes or no

Set the type of client authentication to be used by the TLM.

This is used for any write actions via the REST interface which would modify

the SoftPLC's datatable

Options:

1) ssl - use SSL client certificates (see documentation for a description of ho
to use this)

2) login - use user/password credentials passed with the request

client_auth = ssl # ssL or Llogin

** NOTE: Llogin is not implemented yet

Enable or disable 'normalization' of a request's address in the response from
the REST interface. If enabled, "N7:0" becomes "NOOO7:0000". If disabled, the
returned address matches what was sent to the server.

(r) The best method for creating an WEB.LST file for your application is to start from
- the provided template file.

The [Load] button will load the WEB.LST file from the development system’s disk.
The [Save] button will write the WEB.LST file to the development system’s disk.
The [Fetch] button will load the WEB.LST file from the runtime system’s disk.

The [Send] button will write the WEB.LST file to the runtime system’s disk.

(r') After you [Send] the configuration file, you must restart or cycle power on the
- SoftPLC in order for the changes to take effect.

WEB.LST Configuration File Structure

The figure below shows the structure of the WEB.LST configuration file. Depending on your
application, you will need to either configure or de-activate certain sections of the template
WEB.LST file.

@ The recommended method of de-activating sections in the template WEB.LST file is
- to add a “#” to the beginning of each line so that it becomes a comment.

Sample WEB.LST

Configuration file for SoftPLC WEB TLM.
Anything from # to end of line is a comment.

Set the document root for the web server. This is the location from where HTML
and other files will be served. Use a full system path.
docroot = /var/www

Enable or disable PUT request authentication. If disabled, the client_auth

option below is not used. If enabled, authentication is done via the selected
client_auth method. If this is set to no, then client_auth has no effect.
enable_put_auth = no # yes or no

Set the type of client authentication to be used by the TLM.

This is used for any write actions via the REST interface which would modify

the SoftPLC's datatable

Options:

1) ssl - use SSL client certificates (see documentation for a description of how to use this)
2) login - use user/password credentials passed with the request

client_auth = ssl # ssl or login

*** NOTE: login is not implemented yet

Enable or disable 'normalization' of a request's address in the response from
the REST interface. If enabled, "N7:0" becomes "N00@7:0000". If disabled, the
returned address matches what was sent to the server.

normalize_response_addr = no # yes or no

docroot

Set the document root for the web server. This is the location from where permissible files will
be served. Use a full system path.

Example Description

J[var/www All files which should be available
via WEB.TLM shall be located within
/[var/www

enable_put_auth
Enable or disable PUT request authentication.

Possible Setting Description

Yes (enabled) Authentication is done via the
selected client_auth method. See
‘'client_auth' below.

Possible Setting Description

No (disabled) The 'client_auth' option below is not
used.

client_auth

Set the type of client authentication to be used by the TLM. This is used for any write actions via
the REST interface which would modify the SoftPLC’s datatable

Possible Setting Description
ssl SSL client certificates
login (not yet User/Password credentials passed
implemented) with request

normalize_response_addr

Normalization of a request’s address. For example, a 'normalized' address would be
"N0007:0000"; as opposed to a 'non-normalized' address of "N7:0".

Posible Setting Description

yes Datatable addresses in the response
will be mormalized'.

no Datatable addresses in the response
will not be 'normalized'.

Chapter 4. API Specification

This section explains the Application Programming Interface (API) supported in the REST server.

The functions defined in each section (below) are HTTP requests to the REST server in order to
read/write with the SoftPLC’s datatable. The expected format for information in the body of
requests (and provided in the body of replies) is XML [Content-Type: text/xml]. Additional formats
may be supported in the future.

'Curl' is a command line tool which generates and sends HTTP client side requests; as well as,
receives responses from a server. Curl can be helpful during application development for
understanding what the SoftPLC REST server expects and/or needs. Curl also helps describe how
the API works, so it is used in this chapter to show the basic behaviours of each request type.

If you want to use Curl, but find it cumbersome to install on your client device, install it on the
SoftPLC runtime box. Then, in a separate command line session, use it to execute the commands
suggested below. After completing development of your application, it is unlikely that you will need
to use CURL.

To install Curl on SoftPLC (internet access is assumed)

apt update
apt install curl

Once curl is installed on the runtime box, the hostname becomes localhost.

Quick review of the SoftPLC datatable

The SoftPLC datatable consists of a single array of sub-arrays. The top most array can hold up
to 10,000 sub-arrays, called 'files'. Each file has an element type which describes all elements
within that particular datatable file.

Some element types consist of more than one word; basically a "structure". Timers (T),
counters (C), and control (R) element types all consist of 3 words each. In contrast, the most
common element type is a single integer word.

A datatable address has the element type in the first one or two character positions. For
example, PD12:3000 is a PID file (element type) whose index in the top most array is 12 and
whose element number is 3000.

For elements consisting of multiple words, there may be a word specification attached at the
end of the address following a period. For example, PD12:3000.SP is the setpoint for a PID
element and refers to one "word". In the SoftPLC datatable, a word can be either a primitive
16 bit integer or a primitive IEEE 32 bit floating point value. In summary, PD12:3000 is an
element datatable address and PD12:3000.SP is a word datatable address.

(’) In the descriptions below, any field wrapped in < > is a place holder for a specific
w

10

use case. For example, <splc_ip> shall be replaced with the IP address specific to
the SoftPLC device currently being used.

Any field wrapped in [] is optional.

4.1. Read Functions (HTTP GET & POST Methods)

4.1.1. GET Method

With GET, the datatable address is supplied in the URL.

Discover Available Files
GET http://<splc_ip>/dt

Fetches a listing of all available datatable files from the server. Response is sent as a web page with
the listing and links available to perform a file-read on each individual file.

Read All Datatable Files
GET http://<splec_ip>/dt/all

Fetches the entire datatable.

Single File Read
The GET method can also be used to fetch data from a single datatable file, starting at an optional
offset. It uses a URL that specifies a starting datatable element and a count of elements.

GET http://<splc_ip>/dt/<datafile>:<starting_element>[?count=<element_count>]

<datafile>
is the first part of a word address like N7, PD12, etc.

<starting_element>

is an optional starting element number. If omitted, 0 is assumed.

<element_count>

is the number of datatable elements to fetch. If not supplied or -1, all the elements up to the end
of the enclosing datatable file are returned, starting at the supplied <start_offset>.

Examples
from remote client:

GET http://192.100.100.60/dt/N7:3
GET http://192.100.100.60/dt/N7:3?count=3

11

GET http://192.100.100.60/dt/N7:3?count=-1

from local runtime:
GET http://localhost/dt/N7%3A3

As shown in the last example above, you may "URL encode" the "' in between the
<datafile> and <starting_element>. This decision is only pertinent to this GET
(;) method, because the ":'is in a URL. Other HTTP methods may use this character in

request or response bodies without concern. The server does not require URL
encoding but does support it.
CURL Examples

In CURL examples, the text may be copied to the clipboard and pasted onto the command line of the
SoftPLC runtime.

GET Request

curl -X GET http://localhost/dt/N7:37?count=3

GET Response

<?xml version="1.0" encoding="utf-8" 7>
<files>
<data ad="N7:3" count="3">
000
</data>
</files>

4.1.2. POST Method

With POST, the datatable addresses are supplied in the body of the HTTP request. POST operates
similar to the GET method, with the added functionality of reading from more than one datatable
file per request. The details of the request are specified in the HTTP request body.

POST http://<splc_ip>/dt

POST Body Format

<files>
<data ad="<datafile>:<starting_element>" [count="<element_count>"]/>

</files>

The data element’s ad and count attributes function in the same manner as for the GET method

12

above. The "' in the datatable addresses does not need to be URL encoded because it is not part of
the URL. Multiple files can be read by sending additional data elements in the request.

Example Request Body

<files>
<data ad="00" count="8"/>
<data ad="I1"/>
<data ad="N7:33" count="10"/>
</files>

Example Response

Unless specifying the count attribute in the data XML element, the server will respond with the tail
end of the datatable file starting at the given <starting_element>; if provided.

<files>
<data ad="0:0000" count="8">
0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000
</data>
<data ad="I:0001" count="7">
0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000
</data>
<data ad="N0@007:0033" count="10">
0 0 0 0 0 0 0 0 0 0
</data>
</files>

CURL Examples

In CURL examples, the request text may be copied to the clipboard and pasted onto the command
line of the SoftPLC runtime.

POST Request

curl -X POST http://192.100.100.43/dt -d \
"<files> \
<data ad="00" count="8"/> \
<data ad="I1"/> \
<data ad="N7:33" count="10"/> \
</files>'

POST Response

<?xml version="1.0" encoding="utf-8" 7>
<files>
<data ad="00" count="8">
0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000
</data>

13

<data ad="I1" count="7">
0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000
</data>
<data ad="N7:33" count="10">
000000000
</data>
</files>

4.2. Write Functions

4.2.1. PUT Method

Writing values into the datatable is done with the HTTP PUT method. As with POST, the details of
the request are placed into the body. A write can be done to a single word, multiple words in a

block, and multiple words in multiple blocks by sending different data elements in the request
body.

PUT http://<splc_ip>/dt

PUT Body Format

The HTTP request body is a single XML files element with one or more data elements within it.

<files>
<data ad="<datafile>:<starting_element>" count="<element_count>">
value ...
</data>

</files>

The data element’s XML attributes specify the file type and number <datafile>, element offset at
which to begin writing <starting_element>, and number of elements to be written <element_count>.
The actual values to be written are specified in plain text inside the data element, separated by
whitespace. For a PUT request to be valid, all of this information must be provided (and match
correctly, so the number of values must match the count attribute). The example below shows a
PUT to multiple elements in the same file, one of which is at a non-continuous location from the
others.

<files>
<data ad="N7:0" count="2">42 0xf73d</data>
<data ad="N7:7" count="1">3</data>
</files>

14

Response Format

The response to a PUT request is identical to what would be received as a response by doing a POST
for the values that were in the request. Thus, the sample below is the response that would be
received for the PUT example above.

<files>
<data ad="N0@007:0000" count="2">
42 63293
</data>
<data ad="N0@0@7:0007" count="1">
3
</data>
</files>
@ Request body accepts hex values but converts them to decimal in the response.
CURL Examples

In CURL examples, the request text may be copied to the clipboard and pasted onto the command
line of the SoftPLC runtime.

PUT Request

curl -X PUT http://192.100.100.43/dt -d \
"<files> \
<data ad="n7;0" count="2">0x00FF 2</data> \
<data ad="N7:7" count="1">3</data> \
</files>'

PUT Response

<?xml version="1.0" encoding="utf-8" 7>
<files>
<data ad="n7;0" count="2">
255 2
</data>
<data ad="N7:7" count="1">3</data>
</files>

PUT Body Format (Word level)

<files>
<data ad="<datafile>:<starting_element>.<word>">
value
</data>
</files>

15

The XML attributes are specified similarly to those described in section PUT Body Format. The
datatable address must be a word address (notice the .<word>). The word portion of the "ad"
attribute specifies which word in the element is to be written. The actual value to be written is
specified in plain text inside the XML <data> element. Note that each <data> element can only
specify access to a single word value, therefore there is no "count" attribute needed for this format.
If a count is provided it will be ignored.

Example

<files>
<data ad="T4:0.PRE">4000</data>
</files>

4.3. Tag Substitution

In place of using addresses specified as <datafile>:<starting_element> in the requests, tags may be
used instead. All used tags must be defined in the descriptor table and map to their respective
addresses. This applies to all request types.

Example GET URL

GET http://192.100.100.60/dt/timer1?count=1

Example POST Body
<files>
<data ad="timer1" count="1"/>
</files>
Example PUT Body
<files>
<data ad="important_int" count="1">555</data>
</files>

The response to a request with tags will be similar to a request with addresses, except addresses
will be switched out with tags.

16

	In Process REST Server for SoftPLC® Runtime
	Table of Contents
	Chapter 1. Terms of Use
	Chapter 2. Overview
	2.1. Introduction
	2.2. Concepts
	2.3. Features
	2.4. Limitations
	2.5. Requirements
	2.6. Terminology

	Chapter 3. Web TLM Configuration
	3.1. Configuration Steps
	3.1.1. Module Installation
	3.1.2. Enable Web TLM
	Save Enabled Modules

	3.1.3. Configure TLM
	WEB.LST Configuration Editor Usage
	WEB.LST Configuration File Structure

	Chapter 4. API Specification
	4.1. Read Functions (HTTP GET & POST Methods)
	4.1.1. GET Method
	Discover Available Files
	Read All Datatable Files
	Single File Read
	CURL Examples

	4.1.2. POST Method
	POST Body Format
	CURL Examples

	4.2. Write Functions
	4.2.1. PUT Method
	PUT Body Format
	Response Format
	CURL Examples
	PUT Body Format (Word level)

	4.3. Tag Substitution

