
Modbus Master for SoftPLC® Runtime
Version 1.1

Table of Contents
1. Overview . 1

1.1. Introduction . 1

1.2. Definitions . 1

1.3. Concepts . 2

1.4. Features. 2

1.4.1. Serial Ports and Slaves. 2

1.4.2. Optional Hardware Handshaking. 2

1.4.3. Request Specific Cycle Time . 2

1.4.4. Configuration File Supports Inheritance. 2

1.4.5. Requests Operate Using Scatter/Gather . 2

1.4.6. Slave Specific Error Reporting . 3

1.4.7. Massive Datatable . 3

1.4.8. No Extensive Programming . 3

2. Terms of Use . 5

3. Scanning Operation . 6

3.1. Operating Modes and States. 6

3.2. Driver State Transitions . 7

3.3. Scan is Asynchronous . 7

3.4. Using Short requestTimeouts. 7

4. Configuration. 9

4.1. Modbus Fields . 9

4.2. Elements . 9

4.3. Attributes of Elements. 12

5. Usage . 16

5.1. Installation . 16

5.2. Editor Usage . 16

5.2.1. Configuring a Port. 17

5.3. Ladder Instructions . 18

5.3.1. MBR_GETFAULTMAP . 18

5.3.2. MBR_GETSTATUS. 19

5.3.3. MBR_CLEARSTATUS . 20

5.4. Modbus Exception Codes . 21

5.5. Internal Exception Codes . 22

6. Debugging . 23

6.1. Isolating the Problem Slave Node. 23

6.2. Enable Debugging. 23

6.3. View Debugging . 23

6.4. Direct Debugging to Text File. 24

6.4.1. Direct Debugging output into a text file (SoftPLC 4.x) . 24

6.4.2. Direct Debugging output into a text file (SoftPLC 5.x) . 24

Chapter 1. Overview

1.1. Introduction
This document describes the installation, usage and functionality of a TLM (TOPDOC Loadable
Module) for SoftPLC versions 4.6 and later. This TLM implements the master side of the Modbus
Master/Slave Protocol using a serial line. See here and here for definitions of this protocol.

The TLM described by this document is called MODBMAST. This software capability is
implemented as a TOPDOC Loadable Module (TLM), written in C++ and implements a fairly
comprehensive driver which can manage up to 247 slaves on each of up to 32 serial ports.

This TLM may be used to monitor and control serial RS485, RS422, or RS232 attached slaves.
Modbus protocol has been used as the basis of SCADA systems, but was originally designed for
communicating with Modicon PLC’s. This TLM has features in it that allow it to also do a reasonable
job controlling I/O. That is, it can be configured to take special steps to drive outputs in a way
consistent with programmable controller outputs, such as turning outputs off when transitioning to
a program/stopped from a run mode. Both Modbus RTU and Modbus ASCII are supported, however
Modbus ASCII support requires SoftPLC version 4.6.160608 and TOPDOC NexGen version 1.6.160608
or later.

SoftPLC offers other TLMs in support of Modbus TCP/UDP, as well as Modbus RTU/ASCII Slave. This
TLM only implements the serial line form of the protocol and only the master side of it.

Table 1. Four types of Modbus TLMs

Media Type Master Slave

Serial Line *this TLM* MODBSLAV

TCP and UDP ModbusIPmaster ModbusIPslave

TLMs may be developed by any competent C/C++ programmer who has access to the SoftPLC C/C++
Programmer’s Toolkit, a product readily available from SoftPLC Corporation. There are a number
of Systems Integrators who are SoftPLC Partners who possess the requisite expertise. End users
may also have this capability.

1.2. Definitions
• Modbus RTU and ASCII protocols are Modbus serial protocols. They support up to 247 slaves on

any party-line type bus such as RS485, RS422, or radio packet network.

• A Modbus transaction is master - slave in nature, and consists of the master node sending a
request and the slave node replying to the request with a response. The master node always
sends the request and the slave node always sends the response. The slave node only speaks
when spoken to with a request. Each request is owed exactly one response.

• A Modbus query is another name for request.

• Within a request is a Modbus function code, which is the byte which actually determines the
purpose of the request.

1

http://www.softplc.com/products/controllers/features/
http://modbus.org/docs/PI_MBUS_300.pdf
http://modbus.org/docs/Modbus_Application_Protocol_V1_1a.pdf
http://www.softplc.com/usermanuals/modbus_slave
http://www.softplc.com/usermanuals/modbus_ip_master
http://www.softplc.com/usermanuals/modbus_ip_slave
http://www.modbus.org

1.3. Concepts
The SoftPLC runtime engine software supports TLMs, which are shared library extensions to
SoftPLC. A TLM may be loaded either as a DRIVER or as a MODULE. The difference between a
DRIVER and a MODULE is that a DRIVER is called once per SoftPLC scan, and optionally an
additional number of times per scan. A MODULE is only called when the control program decides to
call it and not as an inherent part of the scan. TLMs are made known to SoftPLC in the
MODULES.LST file which may be edited by TOPDOC NexGen by traversing to: PLC | Modules.

1.4. Features

1.4.1. Serial Ports and Slaves

To use the Modbus Master you need one or more Modbus serial slaves and one or more compatible
serial ports on your SoftPLC master machine. (SoftPLC Corporation can provide master machines
with many serial ports.) Up to 32 serial ports can be configured and are supported by the software.
On each port there can be up to 247 slaves.

1.4.2. Optional Hardware Handshaking

As a configuration option, the TLM can manipulate the RTS (request to send) serial port signal line,
and watch for the CTS (clear to send) line. This can be useful to drive a radio packet modem, by
using RTS to fire up a radio transmitter. The RTS line will be asserted just before it is time to send,
and the CTS line can be a condition of sending. This is optional on a per port basis, and with port
specific timing adjustments.

1.4.3. Request Specific Cycle Time

Each request may have its own timeout and retry count. Each request can be given its own cyclical
period of repetition, or may run on the basis of "as fast as possible". Generally, all the requests on a
port are handled on a round robin basis, but the requests configured with a specific cycle time can
modify this behavior within reason.

1.4.4. Configuration File Supports Inheritance

The configuration file uses XML, and a dedicated configuration editor is provided to make the entry
of requests user friendly. The nature of the XML attributes used makes it possible for an XML
element to inherit a value from its parent/container XML element if not explicitly provided at
nested element level.

1.4.5. Requests Operate Using Scatter/Gather

When declaring a request in the configuration file, the master’s source datatable does not need to
be contiguous for any single Modbus write, nor does the master’s destination datatable for any
single Modbus read. That is, a single read may put the results obtained from a single read into
various places within the datatable. And the datatable values used in a single write do not have to
come from a single block within the master’s datatable.

2

1.4.6. Slave Specific Error Reporting

The driver includes some ladder instructions which manage slave specific error and reporting
status, and are used to troubleshoot a Modbus network and track down problematic slaves.

1.4.7. Massive Datatable

SoftPLC controllers have access to massive amounts of datatable and this makes it possible to use
this TLM to manage large multi-bus SCADA systems. The SoftPLC master can be a data concentrator
of the highest class.

1.4.8. No Extensive Programming

This TLM can be used without extensive application program logic. Only a few rungs are needed to
retrieve slave status blocks. This makes it easy to deploy.

Each request can be earmarked with one of three "when" attribute values as a means of
determining when the request may be sent.

Table 2. The Three Types of Scheduling Earmarks

When Description

start
These are messages which are sent only once to a slave upon a
transition of the SoftPLC master to a RUN mode, and can be used as
single shot configuration data.

run
These are continuous scan type messages issued when the SoftPLC
master is in a RUN mode. Messages of this kind can also have a
cyclical periodic rate defined, or can run as fast as possible.

stop
These are single shot requests issued once when the master
transitions to a PROGRAM (stopped) mode.

SoftPLC also provides a Modbus RTU/ASCII Slave TLM, which is documented here. A single SoftPLC
machine can be both a master and a slave. This capability gives systems designer the power and
flexibility to develop very powerful, fast and flexible distributed control systems. Obviously a
SoftPLC Modbus master can talk to a SoftPLC Modbus slave as well as third party slaves.

3

http://softplc.com/usermanuals/modbus_slave

The following is a list of common Modbus functions and whether they are supported by this TLM or
not:

Table 3. Modbus Function Support

Modbus Function Name Supported

1 Read Coils Yes

2 Read Input Discretes Yes

3 Read Multiple Registers Yes

4 Read Input Registers Yes

5 Write Coil Yes

6 Write Single Register Yes

7 Read Exception Status No

15 Force Multiple Coils Yes

16 Write Multiple Registers Yes

20 Read General References No

21 Write General Registers No

22 Mask Write Register Yes

23 Read Write Registers Yes

24 Read FIFO Queue No

4

Chapter 2. Terms of Use
Because of the variety of uses of the information described in this manual, the users of, and those
responsible for applying this information must satisfy themselves as to the acceptability of each
application and use of the information. In no event will SoftPLC Corporation be responsible or
liable for its use, nor for any infringements of patents or other rights of third parties which may
result from its use.

SOFTPLC CORPORATION MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

SoftPLC Corporation reserves the right to change product specifications at any time without notice.
No part of this document may be reproduced by any means, nor translated, nor transmitted to any
magnetic medium without the written consent of SoftPLC Corporation.

SoftPLC and TOPDOC are registered trademarks of SoftPLC Corporation.

© Copyright 2010-2016 SoftPLC Corporation ALL RIGHTS RESERVED

First Printing July, 2010

Latest Printing June, 2016

SoftPLC Corporation
25603 Red Brangus Drive
Spicewood, Texas 78669
Telephone: 512-264-8390 or 800-SoftPLC (USA)
Fax: 512/264-8399
URL: http://softplc.com
Email: support@softplc.com

5

http://softplc.com
mailto:support@softplc.com

Chapter 3. Scanning Operation

3.1. Operating Modes and States
The SoftPLC runtime engine is always in one of the following states, called Operating Modes.

Table 4. SoftPLC Operating Modes

Mode Description

Program or Remote
Program

Logic is not being solved and the outputs are in an idle state.
Normally idle state means "turned off or zeroed".

Run or Remote Run Logic is being solved and the outputs are active and under the
control of the logic program. They are not idle. The logic program
makes its decisions based on the current state of each input, all of
which are actively scanned.

Test or Remote Test Logic is being solved but the outputs are idle. The logic program
makes its decisions based on the current state of each input, all of
which are actively scanned.

Faulted Logic is not being solved and the outputs are idle. This mode is
entered automatically if you have an error in your program or in
one of your driver configurations.

Each configured Modbus slave is always in one of the following states. Each slave’s state is
independent of the state of any other slave, so not all slaves are always in the same state.

Table 5. Slave States

State of Slave Description

Present and
Responding

The TLM has a good connection to the slave and knows that it is
responding within a timeout limit to its requests. A subset of this
state is the situation where the slave responds with an Modbus
exception to a request.

Not Present or Not
Responding

The TLM is not able to get any response to its requests from this
slave. This is the case when the cable is disconnected, the slave is
not powered up, or the slave has failed.

The two states shown are tracked by the MODBMAST.TLM for each slave. The Present and
Responding state is used for all 4 Operating Modes. As long as a slave is responding, the TLM can
tell it what to do and thereby honor its obligations with respect to Operating Modes. The slaves
have no actual knowledge of the SoftPLC Operating Modes per se. A slave can however be told to
turn its "outputs" off by sending zeroes to those Modbus memory registors in the slave. The slave
does not know the data is "idle" data, only the TLM does.

6

3.2. Driver State Transitions
The SoftPLC runtime engine notifies all TLMs of the need to change from one Operating Mode to
another. A TLM that is acting as an I/O driver must honor the behavior outlined in the Operating
Modes table above. To accomplish this, there are responsibilities that must be met at the edge of
these mode transitions.

Some slaves may need to be configured, and maybe the configuration can be done using one or
more Modbus requests on a single shot basis. This soft configuration is supported by the TLM when
entering Run mode.

Table 6. Special Transitions

Object Transition Description

Runtime Engine From Test, Program, or Faulted to
Run Mode

The TLM issues the when="start"
requests on a one shot basis.

Runtime Engine From Run Mode to Program or
Faulted

The TLM issues the when="stop"
requests on a one shot basis.

3.3. Scan is Asynchronous
At any moment in time, there is a scan list within the TLM for each port. The scan list is a list of
requests that need to be sent now or sometime in the future. The front or top of the list holds the
request currently being processed on that port. When completed or timed out, that request is
moved towards the rear of the list for another attempt later. Because serial communications can be
slow, depending on baudrate, number of slaves, and the turn around time at each slave, this TLM
was designed to allow the scanning of the entire scan list to complete over several program scans.
And since each port has its own scan list, and the size of these can be different, the total time to
scan the entire scan list (scan time) will be different for each port.

Unlike other SoftPLC TLMs, this one modifies datatable memory during the
program scan. Most other TLMs wait until the end of program before they modify
datatable.

When you set the "attempts" attribute to greater than its default of one, then that request will
immediately be tried again at that point in the scan list should there be a reply timeout. The
"attempts" setting only pertains if there is a timeout. If "attempts" is left at the default of one, then
the failed request will be put at the end of the scan list and will be attempted later once it works its
way again to the front of the scan list. There is currently no way to take a slave out of the scan list
except through a configuration file change. But leaving "attempts" set to one means that a
temporarily unavailable slave will only be sent a request once, but once for each request
configured for that slave and there may be several.

3.4. Using Short requestTimeouts
The master begins timing a transaction only after the entire request has been transmitted. This
makes the requestTimeout independent of request length. If the first byte of the reply is not seen

7

within requestTimeout msecs from this point, then the transaction is deemed timed out. After the
first byte of the reply is received, then a different type of timeout comes into play, and that is the
inter-character timeout limit which comes from the Modbus specification. So the requestTimeout is
also independent of reply length. Essentially this means that the requestTimeout can be thought of
as mostly corresponding to the turn around time of the slave, and has only minimal dependency on
the baudrate of the reply. Therefore, it is possible to have fairly agressive and tight
requestTimeouts. This makes it possible to minimize the impact on overall scan time of a missing
slave.

8

Chapter 4. Configuration

4.1. Modbus Fields
Modbus protocol transactions were originally designed for communicating with Modicon PLC
slaves. They assume the existence of and reference four different types of Modicon device memory
regions. Any non-Modicon slave must emulate these four memory regions as if it were an actual
Modicon PLC. Words and bits within these memory addresses are addressed using Reference
Numbers, according to the following table.

The first character of a reference number identifies which of the four memory regions is being
addressed within a (ficticious) Modicon PLC. The first character is special, and might as well be
conceptually removed from the reference number before interpreting the remaining portion of the
reference number itself. So when you see a reference number like 40001, think of this as section 4,
and element 0001. Section 4 is for Output (aka Holding) Registers. After the leading character you
are then left with ordinal 0001 or 1. The elements within each of the 4 Modicon memory regions are
numbered starting from 1.

Table 7. Memory Regions, Region Identifying Number, and Example Reference Numbers

Memory Region Id Number Example

Input Discrete (boolean
inputs)

1 e.g. 120438

Input Registers (16 bit
words)

3 e.g. 3023

Output Coils (boolean
outputs)

0 e.g. 0438

Output (aka Holding)
Registers (16 bit words)

4 e.g. 40438

4.2. Elements
This TLM is configured using a special configuration editor which is built into TOPDOC NexGen. The
configuration file is XML text, is hierarchical with the following XML elements. Elements are listed
below with one of the following characters appended. The appendage is used to indicate how many
times the element may occur in any given context.

The appended character and its meaning is as follows:

• Question Mark (?) ⇒ Optional (zero or one)

• Asterisk (*) ⇒ Zero or more

• Plus Sign (+) ⇒ One or more

• None (no suffix) ⇒ exactly one

Table 8. Elements and their Allowed Sub-Elements

9

Element Name Description Sub Element(s)

ModbusSerial Top most element, holds all other elements Port*

Port References and configures a serial COM
port on the master.

ModemControl?,
Slave*

ModemControl Its presence turns on hardware
handshaking for the enclosing port.

Slave Declares and holds transactions for a slave
on the enclosing port.

ReadInputDiscretes*,
ReadInputRegisters*,
ReadMultipleRegiste
rs*, ReadCoils*,
WriteSingleRegister*,
WriteMultipleRegiste
rs*,
MaskWriteRegister*,
ForceMultipleCoils*,
WriteCoil*,
ReadWriteRegisters*

ReadInputDiscretes A Modbus request of the same name refNum, toBlock

ReadInputRegisters A Modbus request of the same name refNum, toBlock+

ReadMultipleRegiste
rs

A Modbus request of the same name refNum, toBlock+

ReadCoils A Modbus request of the same name refNum, toBlock

WriteSingleRegister A Modbus request of the same name refNum, fromBlock

WriteMultipleRegiste
rs

A Modbus request of the same name refNum, fromBlock+

MaskWriteRegister A Modbus request of the same name. The
"or mask" comes from the value of the
fromBlock

refNum, andMask,
fromBlock

ForceMultipleCoils A Modbus request of the same name refNum, fromBlock

WriteCoil A Modbus request of the same name refNum, fromBlock

ReadWriteRegisters A Modbus request of the same name refNum, toBlock+,
refNum, fromBlock+

refNum A Modicon reference number

toBlock Where the reply data is to be written into
SoftPLC

fromBlock Where the request data is read from
SoftPLC

const?

10

Element Name Description Sub Element(s)

andMask An integer constant, like 0xFFFE. See the
Modbus specification for the
MaskWriteRegister request. The orMask is
given by the fromBlock for this request,
and unlike the and mask, does not have to
be constant.

const A list of integer constants. These data will
be sent as part of the enclosing request, in
lieu of reading live data from the SoftPLC
master’s datatable. A "const" is an optional
way to customize a fromBlock.

When using TOPDOC NexGen to edit the configuration file, its application specific
editor takes care of enforcing the rules of the configuration file.

Notice that a few of the word oriented requests can take multiple fromBlocks
and/or multiple toBlocks. In the case of read word requests, the multiple toBlocks
are used to split up the response into several SoftPLC memory locations. So you
can route your discrete input data into the INPUT datatable section and your
analog data into an INTEGER datatable section, should they need to be in the same
response. Each toBlock "consumes" some of the response data consecutively,
according to its count field. So the sum of all the count fields should not exceed the
allowed limit for the request’s response. Likewise, for word write requests,
multiple fromBlocks are supported. This allows you to assemble a request using
data from multiple sources within SoftPLC. Your discrete output data can come
from the OUTPUT datatable section and your analog data can come from an
INTEGER datatable section, and be part of the same request. Again, the sum of the
count fields for the fromBlocks cannot exceed the limit for the request. Input data
that you put into the INPUT datatable section with a toBlock will automatically
feature the Input Forcing cabability within the SoftPLC runtime. Output data you
get from the OUTPUT datatable section using a fromBlock will automatically
feature the Output Forcing capability within the SoftPLC runtime. Only those two
sections support forcing, a feature which is mostly helpful for discrete I/O, and not
usually analog data.

The following is a sample screen from the configuration editor showing a few of the elements from
the above table. Notice how they are arranged hierarchically and that each element can "contain"
other elements. (The rules of containment are given in the table Elements and their Allowed Sub-
Elements.)

11

In the above panel, the element name is at the far left of each tree row. To the right of the element
name, still within the tree row, is a list of attributes. That element’s attributes are elaborated on
within the table at the far right of the panel. That table is dynamic (depends on the selected
element), and has one row for each attribute. The following table lists the allowed attributes for
each element type:

4.3. Attributes of Elements
In the rules table which follows you will see three attributes occur in more than one XML Element
(tree node). The three attributes are:

• minPeriod

• requestTimeout

• attempts

These three are special and are the inherited attributes . If missing at a given node, then the value
is used from the next nearest ancestor above which encloses the node missing the attribute. For
example, if a request node does not have a requestTimeout setting (because it is optional and in this
example is not present) then the enclosing Slave element is searched for a requestTimeout. If it is
still missing there, then the enclosing Port element is searched. If it is still missing there, then the
Port’s default is used.

The table below gives the allowed attributes which may be attached to each XML element in the
configuration file. Only these attributes may be attached to the corresponding element.

Element Attribute Value Required

ModbusSerial debug 0, 1, or 2, meaning "enable none, some, or
all debugging print statements"

no, defaults
to 0

12

Element Attribute Value Required

Port num The COM port number, 0 - 31. "num" must
be unique for all ports, and must be
supported by physical hardware on your
SoftPLC runtime machine.

yes

framing Type of encoding used in Modbus Serial
frames, RTU or ASCII.

yes, defaults
to "RTU"

baudrate The bit rate of the COM port. 300 - 230400 yes, use
19200 if in
doubt

dataBits The number of databits to use. Use 8 for
RTU, 7 or 8 for ASCII.

no, defaults
to 8

parity The parity setting, may be "none", "even",
"odd", or "mark"

no, defaults
to "none"

stopBits The stopbits setting, may be 1 or 2. no, defaults
to 1

minPeriod The minimum number of milliseconds to
wait between attempts to send a request.

no, defaults
to 0

requestTimeo
ut

Milliseconds to wait for a response to a
request, for any request contained by this
element.

no, defaults
to 30

attempts The number of times a request is sent
without receiving any reply within
requestTimeout msecs before it is deemed
failed and put at the end of the scan list.

no, defaults
to 1

requestGap Milliseconds to wait after receiving a reply
before sending the next request

no, defaults
to 3, range 0-
250

ModemContr
ol

waitDelayCTS The number of msecs to wait for the CTS
line to be asserted by the modem,
indicating that it is ready to handle a
transmission of a request.

yes

13

Element Attribute Value Required

Slave id Provides the slave identification number, 1
- 247. Must be unique within an enclosing
port.

yes

minPeriod The minimum number of milliseconds to
wait between attempts to send a request.

no, defaults
to Port’s

requestTimeo
ut

Milliseconds to wait for a response to a
request, for any request contained by this
element.

no, defaults
to Port’s

attempts The number of times a request is sent
without receiving any reply within
requestTimeout msecs before it is deemed
failed and put at the end of the scan list.

no, defaults
to Port’s

<any
request>

when "run" or "start": run ⇒ when in a run mode,
start ⇒ one shotted when entering a run
mode

no, defaults
to "run"

minPeriod The minimum number of milliseconds to
wait between attempts to send a request.

no, defaults
to Slave’s

requestTimeo
ut

Milliseconds to wait for a response to a
request.

no, defaults
to Slave’s

attempts The number of times a request is sent
without receiving any reply within
requestTimeout msecs before it is deemed
failed and put at the end of the scan list.

no, defaults
to Slave’s

refNum

toBlock dest a SoftPLC word or bit address, e.g. "I12:0". If
the enclosing request reads registers (not
coils or discretes), then a word address is
required. If instead the enclosing request
reads coils or discretes, then a bit address
may be supplied but its bit component must
be zero.

yes

count the number of 16 bit words or the number
of bits, depending on the enclosing request
and the fmt attribute of this toBlock.

yes

fmt format of the response data, and
determines the interpretation of the count
attribute. "i2" or "bit": i2 ⇒ 16 bit (2 byte)
signed integers, bit ⇒ bits

yes

14

Element Attribute Value Required

fromBlock source a SoftPLC word or bit address, e.g. "O12:0".
If the enclosing request writes registers
(not coils or discretes), then a word address
is required. If instead the enclosing request
writes coils or discretes, then a bit address
may be supplied and its bit component may
be non-zero.

yes

count the number of 16 bit words or the number
of bits, depending on the enclosing request
and the fmt attribute of this toBlock.

yes

fmt format of the response data, and
determines the interpretation of the count
attribute. "i2" or "bit": i2 ⇒ 16 bit (2 byte)
signed integers, bit ⇒ bits

yes

andMask

In most cases where an "integer constant" is allowed, for example in the andMask
or const elements, you may enter that value in either hex or decimal. Hex numbers
start with a leading "0x". Example: "16" or "0x0010" would be OK.

15

Chapter 5. Usage

5.1. Installation
The TLM is named modbmast.tlm.so and is found as part of the standard SoftPLC 4.x installation in
the /SoftPLC/tlm directory. To use it you merely have to enable it in NexGen’s PLC | MODULES
editor. Then you must edit the xml file MODBUS.XML which is the TLM’s configuration file. There is
an application specific editor for this MODBUS.XML file within NexGen. It is easy to edit the
configuration file from the PLC | MODULES editor. Simply click on the Configure button after
selecting and enabling Use in the same row as the MBIPMAST TLM.

5.2. Editor Usage

16

Add button will insert a new element within the selected element. First select the element you wish
to insert into.

Delete button will deleted the selected element. It is only enabled when you are allowed to delete
the selected element.

Move Up button will move the selected element up in the current containment list.

Fetch, Send, Load, and Save all have the same meaning as they do in the NexGen Module editor.
You can see the helpfile for that editor by going to that editor and clicking on Help.

Use Send to transfer the configuration down to the SoftPLC. The next step is to cycle power on the
SoftPLC for the changes to take place.

As an alternative to cycling power, you may enter "Remote Program" mode using
NexGen, then select "Remote Program" a second time. This psuedo transition from
Remote Program to Remote Program is a signal to the TLM that it should reload its
configuration file. This way you can reconfigure without cycling power, although it
does require you enter "Remote Program" mode (twice!).

5.2.1. Configuring a Port

17

A Port is configured simply by adding the desired Slave elements and Modbus requests to the
Slave. Clicking the Add button with a Slave selected will bring up a list of requests to choose from
as shown in the image above. The request must then be manually configured by setting the refNum
and the attributes of the toBlock or fromBlock.

5.3. Ladder Instructions
This TLM implements three ladder instructions which are useful for diagnostics and fault
situations.

5.3.1. MBR_GETFAULTMAP

This ladder instruction can be used to fetch a bitmap of up to 247 slaves on a given port. The bitmap
is copied into the Map: instruction parameter which is a block of 17 words. If any slave is in the
Not Present or Not Responding state, then its corresponding bit will be set, else not.

Table 9. Instruction Parameters

Parameter Meaning

Port: The COM port number of interest.

Map:

A block address of 17 words (= 247/16, rounded up) which will receive
a bitmap of all the configured slaves on the requested port. (By using
a block + address in a 'B' datatable file, the bit numbers will ascend
from zero across word boundaries.) The bit numbers will then
correspond to slave id. Bit 0 will not be used since there can be no
slave 0, and this bit will always be set to zero.

This is a permissive instruction and it will evaulate to false when all the bits in the Map are zero,
meaning no slave faults. If any slave is in the Not Present or Not Responding state, then its
corresponding bit will be set in the Map and the instruction will evaluate to true. In the example
which follows, a counter is incremented to keep track of the number of times any slave has not
responded. If you don’t want the counter to increment on every program scan, but rather only on

18

low to high transitions, then remove the unlatch instruction from the example rung below.

For example, if block #B3:0 were used to receive the Map , then testing B3/123 would tell you if
slave 123 was failed. You could test this bit with XIC to increment a dedicated counter (CTU) to track
failures of this specific slave.

5.3.2. MBR_GETSTATUS

This instruction can be used to fetch 5 status words for each slave. The TLM keeps a 5 word status
block for each slave internally. This 5 word block can be retrieved into the datatable for any slave.

Table 10. Instruction Parameters

Parameter Meaning

Result:

A block address which will receive a number of 5 word status blocks,
depending on how many Slaves are requested in SlaveCount. The
pattern of 5 words is repeated one after another according to the Five
Word Slave Status Block definition below.

Port: The COM port number of interest.

SlaveStart:
The slave id of the first Slave of interest within a contiguous sequence
of slave ids. These Slaves should be defined in the configuration file
under Port.

SlaveCount:

The number of Slaves of interest starting at the Slave with slave id
equal to SlaveStart. In the example rung above, there will be 11 Slaves
fetched starting at slave id 1, and these would be 1,2,3,4,5,6,7,8,9,10,
and 11.

The meaning of the 5 status words is as follows: (Meanings are for a single specific slave)

Table 11. Five Word Slave Status Block

19

Word Index Status Counter Meaning

0

Average response time in msecs. This time is measured from just after
the request has been transmitted onto the wire to just after the reply
has been receieved, and so is dependent on baudrate of the reply and
turnaround time of the slave. It is a floating average of recent
transactions for this slave.

1

Number of times there was no reply at all within requestTimeout
msecs, or there was an inter character timeout within the reply.
(Wraps around and may appear to be negative as it goes above
32,767.)

2
Number of times TLM saw a Modbus exception response from the
slave. (Wraps around and may appear to be negative as it goes above
32,767.)

3

Set to the Modbus function code of any request that has most recently
failed. Will be set to zero upon the next successful completion of any
request. So it must be snapshotted since it goes to zero quickly after a
failure. A non-zero value in here means the slave had some kind of
problem very recently, and the value in here tells you the Modbus
function code of the failed request.

4

Is one of 3 types of values:
Positive: The Modbus Exception Code received from the last request
sent to this slave.
Zero: Means that no error happened on the last request.
Negative: Says that the response was not received properly. Think of
this as an internal exception, one internal to the TLM.

Notice that the two counters, at index 1 and 2, will overflow into a negative range after awhile and
eventually wrap around through zero.

This instruction can be used to monitor the configuration correctness, health, performance, and
connection integrity of any or all slaves.

5.3.3. MBR_CLEARSTATUS

This instruction clears the internal 5 status words (to zero) for each slave in a range of slaves. The
range of slaves can be any number but must be a contiguous range of slave ids.

This instruction can be used to get a fresh start, say after power cycling your slaves or modifying
the cabling, when you might want to erase the history of previous problems, especially the 2
counters.

20

Table 12. Instruction Parameters

Parameter Meaning

Port: The COM port number of interest.

SlaveStart
The starting slave id of the first slave of interest within a contiguous
range.

SlaveCount
The number of contiguous slave ids of interest. In the example rung
above, there will be 11 slaves cleared starting at slave 1.

5.4. Modbus Exception Codes
Table 13. Modbus Exception Codes

Code Name Meaning

1
ILLEGAL

FUNCTION

The function code received in the query is not an
allowable action for the slave. If a Poll Program
Complete command was issued, this code indicates that
no program function preceded it.

2
ILLEGAL DATA

ADDRESS
The data address received in the query is not an
allowable address for the slave.

3
ILLEGAL DATA

VALUE
A value contained in the query data field is not an
allowable value for the slave.

4
SLAVE DEVICE

FAILURE
An unrecoverable error occurred while the slave was
attempting to perform the requested action.

5 ACKNOWLEDGE

The slave has accepted the request and is processing it,
but a long duration of time will be required to do so.
This response is returned to revent a timeout error
from occurring in the master. The master can next
issue a Poll Program Complete message to determine if
processing is completed.

6
SLAVE DEVICE

BUSY

The slave is engaged in processing a long–duration
program command. The master should retransmit the
message later when the slave is free.

21

Code Name Meaning

7
NEGATIVE

ACKNOWLEDGE

The slave cannot perform the program function
received in the query. This code is returned for an
unsuccessful programming request using function code
13 or 14 decimal. The master should request diagnostic
or error information from the slave.

8
MEMORY PARITY

ERROR

The slave attempted to read extended memory, but
detected a parity error in the memory. The master can
retry the request, but service may be required on the
slave device.

5.5. Internal Exception Codes
Table 14. Internal Exception Codes

Code Name Meaning

-1 BAD CRC
The CRC16 of the reply did not match what was
expected.

-2
INCOMPLETE

REPLY

There was an inter-character timeout, meaning the
slave sent a reply with a gap within it, or the reply was
incomplete.

-3 NO REPLY There was no reply within the requestTimeout setting.

-4 NO CTS
The CTS line was not asserted by the modem via the
cable within the ModemControl waitDelayCTS setting.

-5 NO XMIT ROOM
The port’s transmit queue is not emptying fast enough.
You must extend your requestTimeouts.

-6 WAIT XMITTED
The port’s transmit queue is not emptying fast enough.
Please report this to support@softplc.com.

22

mailto:support@softplc.com

Chapter 6. Debugging
This section gives tips on debugging problems on the Modbus network.

6.1. Isolating the Problem Slave Node
During startup or when troubleshooting a problem node it is usually best to isolate the problem
node. This means look at it in isolation, by making it the only active slave on the network. You can
keep the other slaves connected, but use a temporary configuration file to announce to the TLM
only the node that you are troubleshooting. All other nodes/slaves will simply not be scanned.

Before you start debugging, you should use the configuration editor to Fetch and
then Save your existing full blown configuration. Then on your development
system (Windows computer), temporarily copy the file
\SoftPLC\plc\<PLCNAME>\MODBMAST.XML to a safe place. Then you can edit the
configuration file temporarily and experiment freely. Later restore by copying
from the safe place back to \SoftPLC\plc\<PLCNAME>\MODBMAST.XML. Then use
the editor to Load then Send the file back down to SoftPLC. Remember that you
have to restart SoftPLC after each configuration change, or you can do a PROGRAM
mode to PROGRAM mode transition.

6.2. Enable Debugging
The SoftPLC runtime engine constantly monitors its processes, and 'logs' these observations as
process output. By default, these logs are minimal. However, for troubleshooting purposes, the logs
can provide greater detail.

In the configuration file there is the top most element ModbusSerial and its attribute debug.

• A debug value of "0" represents the minimal detail to be logged.

• A debug value of "1" increases the detail logged.

• A debug value of "2" adds timing information to the lower level values.

6.3. View Debugging
Viewing these logs shall be completed at the command prompt of the SoftPLC system. To access the
command prompt, log into the SoftPLC by either:

• (from Windows) use third-party 'PUTTY' application

• (from Linux) use SSH from Terminal application

• (TOPDOC 5.x) use Remote Console feature in the 'PLC' window

Default login credentials are as follows:
user: root
password: softplc

23

Once logged in, the logs can be viewed by executing one of the following:
(the '#' represents the prompt, and is not typed)

• For SoftPLC firmware 4.x

◦ # logread

• For SoftPLC firmware 5.x

◦ # journalctl -u softplc

▪ You may need to use the arrow keys to scroll down to the end of the logs. The last logs
are the most recent.

6.4. Direct Debugging to Text File
The previous sections have shown how to view the logs from the command prompt. However,
recording the logs to text file format is, in the least, efficient for receiving support. Accomplishing
this, much like viewing the logs, is firmware dependent (see following sections). Once the text file is
created, it can be transferred via (S)FTP to the TOPDOC machine. A detailed explanation of (S)FTP
transfers can be found in the TOPDOC User’s Guide.

6.4.1. Direct Debugging output into a text file (SoftPLC 4.x)

1. Log into SoftPLC using either a) PUTTY from Windows or b) using ssh from Linux or c) at the
command prompt of the SoftPLC system.

2. Run this command:
/etc/init.d/softplc.sh stop

3. Change into the /SoftPLC/run directory:
cd /SoftPLC/run

4. You can run SoftPLC from the command prompt now and redirect its output to an arbitrary file
(named out.txt here). We put that file into the RAM disk which is anchored in the /tmp directory.
./runsplc > /tmp/out.txt

5. Let this run for 5-60 seconds, then press control-C. Now you have the output captured in file
/tmp/out.txt, each request-response transaction will be captured in that file.

6. You can look at the file using the program named "less".
less /tmp/out.txt
Press ESC when done.

7. You can make configuration file changes and Send them down to SoftPLC. Then merely repeat
the part of this process starting at step 4 above.

8. When done, remember to set debug back to "0", then you can start SoftPLC as a daemon either
by a) power cycling the box or b) doing the following:
/etc/init.d/softplc.sh start

6.4.2. Direct Debugging output into a text file (SoftPLC 5.x)

1. Log into SoftPLC using either a) the remote console feature in TOPDOC’s PLC window, b) PUTTY
from Windows, or c) using ssh from Linux.

24

2. Run this command:
systemctl stop softplc

3. Change into the /SoftPLC/run directory:
cd /SoftPLC/run

4. You can run SoftPLC from the command prompt now and redirect its output to an arbitrary file
(named out.txt here). We put that file into the RAM disk which is anchored in the /tmp directory.
./runsplc > /tmp/out.txt

5. Let this run for 5-60 seconds, then press control-C. Now you have the output captured in file
/tmp/out.txt, each request-response transaction will be captured in that file.

6. You can look at the file using the program named "less".
less /tmp/out.txt
Press ESC when done.

7. You can make configuration file changes and Send them down to SoftPLC. Then merely repeat
the part of this process starting at step 4 above.

8. When done, remember to set debug back to "0", then you can start SoftPLC as a daemon either
by a) power cycling the box or b) doing the following:
systemctl start softplc

25

	Modbus Master for SoftPLC® Runtime
	Table of Contents
	Chapter 1. Overview
	1.1. Introduction
	1.2. Definitions
	1.3. Concepts
	1.4. Features
	1.4.1. Serial Ports and Slaves
	1.4.2. Optional Hardware Handshaking
	1.4.3. Request Specific Cycle Time
	1.4.4. Configuration File Supports Inheritance
	1.4.5. Requests Operate Using Scatter/Gather
	1.4.6. Slave Specific Error Reporting
	1.4.7. Massive Datatable
	1.4.8. No Extensive Programming

	Chapter 2. Terms of Use
	Chapter 3. Scanning Operation
	3.1. Operating Modes and States
	3.2. Driver State Transitions
	3.3. Scan is Asynchronous
	3.4. Using Short requestTimeouts

	Chapter 4. Configuration
	4.1. Modbus Fields
	4.2. Elements
	4.3. Attributes of Elements

	Chapter 5. Usage
	5.1. Installation
	5.2. Editor Usage
	5.2.1. Configuring a Port

	5.3. Ladder Instructions
	5.3.1. MBR_GETFAULTMAP
	5.3.2. MBR_GETSTATUS
	5.3.3. MBR_CLEARSTATUS

	5.4. Modbus Exception Codes
	5.5. Internal Exception Codes

	Chapter 6. Debugging
	6.1. Isolating the Problem Slave Node
	6.2. Enable Debugging
	6.3. View Debugging
	6.4. Direct Debugging to Text File
	6.4.1. Direct Debugging output into a text file (SoftPLC 4.x)
	6.4.2. Direct Debugging output into a text file (SoftPLC 5.x)

