
ModbusIP Master for SoftPLC®
Runtime

Version 1.0



Table of Contents
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

1.2. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

1.3. Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

1.4. Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

1.5. Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

2. Terms of Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

3. I/O Scanning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

3.1. Operating Modes and States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

3.2. Driver State Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

3.3. Scan Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

3.4. Network Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

4. Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

4.1. Modbus Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

4.2. Configuration Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

5. Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

5.1. Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

5.2. Editor Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

5.3. Ladder Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

5.3.1. MBM_GETFAULTMAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

5.3.2. MBM_GETSTATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

5.3.3. MBM_CLEARSTATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

6. Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

6.1. Isolating the Problem Slave Node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

6.2. Enable Debugging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

6.3. View Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

6.4. Direct Debugging to Text File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

6.4.1. Direct Debugging output into a text file (SoftPLC 4.x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

6.4.2. Direct Debugging output into a text file (SoftPLC 5.x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

7. Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

7.1. MBIPMAST.XML DTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26



Chapter 1. Overview

1.1. Introduction
This document describes the installation, usage, and functionality of a TOPDOC Loadable Module
(TLM) for SoftPLC version 4.x and later. The TLM implements the master (or client) side of the
Modbus TCP protocol. As an extension of the standard, it also implements the same protocol on
UDP/IP.

This TLM may be used to monitor and control ethernet based I/O and MMI graphical user interface
stations, or it may be used to communicate with other controllers on an ethernet. Modbus protocol
was designed for communicating with Modicon PLC’s and was not designed for communicating
with I/O. However, this TLM is an I/O driver first and foremost, and a peer to peer messaging
service secondarily. Therefore it takes special steps to overcome most shortcomings in the Modbus
protocol with respect to I/O control, resulting in a good I/O solution to most control applications.

This driver can be used without any application program logic required for configuring I/O
modules or firing messages. Messages are ear-marked for either "configuration" or "RUN mode
continuous" purposes. Configuration messages take place automatically just as SoftPLC enters RUN
mode. RUN mode continuous messages are issued cyclically any time SoftPLC is in RUN mode.
Lastly, the RUN mode continuous messages automatically use alternate "write" data on the last scan
before SoftPLC enters PROGRAM mode, and thus the process outputs will be turned off as you
would expect.

1.2. Definitions
• Modbus TCP protocol is similar to simple Modbus serial protocol. Modbus TCP runs on top of a

TCP/IP connection and has a 6 byte header at the beginning of each simple modbus frame,
where frame means either a request or response packet.

• Modbus UDP protocol is nearly identical to Modbus TCP except that it runs connectionless on
UDP/IP. Unlike TCP which is a gauranteed delivery service, when using UDP the application
layer is responsible for any retries required due to possible loss of frames.

• A Modbus transaction is master - slave in nature, and consists of the master node sending a
request and the slave node replying to the request with a response. The master node always
sends the request and the slave node always sends the response. The slave node only speaks
when spoken to with a request. Each request is owed exactly one response.

• The term client is an alternative to master. The term server is an alternative to slave.

• Some requests may be earmarked as configuration requests, so that they are only sent when it
is appropriate to configure an I/O module.

• In this TLM, all output (Modbus "write") requests have two alternative forms of output data
associated with them, live data and idle data. Which of the two forms of data is used depends
on the SoftPLC runtime engine’s Operating Mode.

• Modbus IP means either Modbus TCP or Modbus UDP but not simple Modbus serial protocol.

1

http://www.softplc.com/products/controllers/features/
http://www.modbus.org
http://jamod.sourceforge.net/kbase/modbus_udp.html
http://jamod.sourceforge.net/kbase/modbus_udp.html
http://www.modbus.org
http://jamod.sourceforge.net/kbase/modbus_udp.html


1.3. Concepts
The SoftPLC runtime engine software supports TLMs, which are shared library extensions to
SoftPLC. A TLM may be loaded either as a DRIVER or as a MODULE. The difference between a
DRIVER and a MODULE is that a DRIVER is called once per SoftPLC scan, and optionally an
additional number of times per scan. A MODULE is only called when the control program decides to
call it and not as an inherent part of the scan. TLMs are made known to SoftPLC in the
MODULES.LST file which may be edited by TOPDOC NexGen by traversing to: PLC | Modules.

1.4. Features
In order to use the modbus IP master TLM you need a working ethernet connection. This TLM takes
a configuration file named MBIPMAST.XML and acts as a "scanner" or as "master" or a "client",
three terms which mean the same thing in the context of Modbus IP. On the other end of any
Modbus conversation is a "slave" or a "server". Because the master implemented by this TLM
supports both TCP and UDP carriers for the Modbus protocol, this allows you to talk to slaves which
implement MODBUS/UDP in addition to slaves which implement only MODBUS/TCP. Up to 128
servers are supported by this master. Each slave may be addressed using TCP or UDP, or both.

When TCP is used by the master, there is a TCP connection established. When UDP is used by the
master, the request response sequence takes place in a "connection-less" fashion. Because UDP is
not a guaranteed delivery service, any Modbus master using UDP instead of TCP to carry the
modbus requests and responses should implement timeout and retry logic. This master TLM allows
you to configure the response timeout and attempts for each UDP server uniquely.

SoftPLC also provides a Modbus IP Slave TLM, which is documented here. A single SoftPLC machine
can be both a master and a slave. This capability gives the systems designer the power and
flexibility to develop very powerful, fast and flexible distributed control systems. Obviously a
SoftPLC Modbus master can talk to a SoftPLC Modbus slave as well as third party slaves.

2

http://softplc.com/usermanuals/modbus_ip_slave


The following is a list of the Modbus Commands, and whether they are supported or not:

Table 1. Modbus Command Support

Modbus Function Name Supported?

1 Read Coils Yes

2 Read Input Discretes Yes

3 Read Multiple Registers Yes

4 Read Input Registers Yes

5 Write Coil Yes

6 Write Single Register Yes

7 Read Exception Status No

15 Force Multiple Coils Yes

16 Write Multiple Registers Yes

20 Read General References No

21 Write General Registers No

22 Mask Write Register Yes

23 Read Write Registers Yes

24 Read FIFO Queue No

3



1.5. Requirements
• A working ethernet or PPP link.

• Version 4.x SoftPLC or later.

4



Chapter 2. Terms of Use
Because of the variety of uses of the information described in this manual, the users of, and those
responsible for applying this information must satisfy themselves as to the acceptability of each
application and use of the information. In no event will SoftPLC Corporation be responsible or
liable for its use, nor for any infringements of patents or other rights of third parties which may
result from its use.

SOFTPLC CORPORATION MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

SoftPLC Corporation reserves the right to change product specifications at any time without notice.
No part of this document may be reproduced by any means, nor translated, nor transmitted to any
magnetic medium without the written consent of SoftPLC Corporation.

SoftPLC, and TOPDOC are registered trademarks of SoftPLC Corporation.

© Copyright 2005 SoftPLC Corporation ALL RIGHTS RESERVED

First Printing July, 2005

Latest Printing July, 2005

SoftPLC Corporation 25603 Red Brangus
Drive Spicewood, Texas 78669
USA Telephone: 1-800-SoftPLC
Fax: 512/264-8399
URL: http://softplc.com
Email: support@softplc.com

5

http://softplc.com
mailto:support@softplc.com


Chapter 3. I/O Scanning
This TLM is primarily intended for controlling ethernet based I/O. As an I/O driver, it assumes the
normal burdens of a SoftPLC I/O driver pertaining to the management of operating modes and
states, described below.

3.1. Operating Modes and States
The SoftPLC runtime engine is always in one of the following states, called Operating Modes.

Table 2. SoftPLC Operating Modes

Mode Description

Program or Remote Program Logic is not being solved and the outputs are in
an idle state. Normally idle state means "turned
off or zeroed", but with this driver, each output
is independently configurable to be other than
off or zero in its idle state. For example, a valve
can be configured to be at 50% open in its idle
state. If you take no special steps, the idle state of
an output is zero or off.

Run or Remote Run Logic is being solved and the outputs are active
and under the control of the logic program. They
are not idle. The logic program makes its
decisions based on the current state of each
input, all of which are actively scanned.

Test or Remote Test Logic is being solved but the outputs are idle.
The logic program makes its decisions based on
the current state of each input, all of which are
actively scanned.

Faulted Logic is not being solved and the outputs are
idle. This mode is entered automatically if you
have an error in your program or in one of your
driver configurations.

Each configured Modbus IP slave is always in one of the following states. Each slave’s state is
independent of the state of any other slave, so not all slaves are always in the same state.

Table 3. Slave States

State of Slave Description

Present and Responding The TLM has a good connection to the slave and
knows that it is responding within a timeout
limit to its requests. A subset of this state is the
situation where the slave responds with an
exception to a request.

6



State of Slave Description

Not Present or Not Responding The TLM is not able to get any response to its
requests from this slave. This is the case when
the cable is disconnected, the slave is not
powered up, or the slave has failed.

The two states shown are tracked by the TLM for each slave. The Present and Responding state is
used for all 4 Operating Modes. As long as an I/O module is responding, the TLM can tell it what to
do and thereby honor its obligations with respect to Operating Modes. The slaves have no actual
knowledge of the SoftPLC Operating Modes per se. An output module is told to go "idle" merely by
sending the corresponding process data to the module. The module does not know the data is "idle"
data, only the TLM does.

3.2. Driver State Transitions
The SoftPLC runtime engine notifies all TLMs of the need to change from one Operating Mode to
another. A TLM that is acting as an I/O driver must honor the behavior outlined in the Operating
Modes table above. To accomplish this, there are significant responsibilities that must be met at the
edge of these mode transitions.

Additionally most Modbus IP I/O modules these days are intelligent and can be software configured
to operate with alternative behaviors. The soft configuration normally takes place by sending
regular Modbus requests, but with special memory addresses used in the requests that are reserved
for configuration.

This soft configuration may be required when entering Run mode, or it may be required just after
an I/O module is replaced, possibly due to an I/O module failure. The I/O module replacement might
take place while the SoftPLC runtime engine is in Run mode the entire time. The I/O driver must
therefore detect that the I/O module is newly present, and send the configuration commands on the
edge of this transition from not present to present.

Table 4. Special Transistions

Object Transistion Description

Runtime Engine From Run Mode to Program,
Faulted, or Test

The TLM issues the output
requests to the output modules
with the idle data on a one shot
basis.

Runtime Engine From Test, Program, or Faulted
to Run Mode

The TLM issues the
configuration requests to all
modules on a one shot basis.

Any Slave From Not Present to Present The TLM issues the
configuration requests to this
module on a one shot basis.

7



3.3. Scan Synchronization
The TLM has its own thread (scanner thread) with its own scanning operation. This scanner thread
is separate from the main control program thread (main thread) which is part of the SoftPLC
runtime engine. The scanner thread runs in parallel with the main thread. Naturally the two
threads can have different work loads and will rarely complete their respective scan cycles in the
same amount of time. The following rules are put into effect:

1. If the scanner thread completes a given scan cycle before the main thread, then the scanner
thread waits for the main thread to complete before starting its cycle again. (No cpu time is
wasted during the wait.)

2. If the main thread completes before the scanner thread, it does not wait for the scanner thread,
and the two threads both run as fast as they can, with the main thread running at a faster cycle
rate.

In other words, the scanner thread is not allowed to wastefully use CPU cycles obtaining fresh I/O
status only to have it not used. On the other hand, if this Modbus master scanner thread is running
slower than the main thread, then only the I/O on the ethernet is updated slower. Any other I/O
drivers (TLMs) and the main thread are not slowed down due to a slow ethernet module.



The modbus scanner thread’s scan cycle time is dictated by the worst case
response time from any of the ethernet I/O modules (modbus slaves) on the I/O
ethernet. Therefore if the overall I/O scan time of the ethernet I/O modules is
important, make sure all of your ethernet I/O modules have an acceptable
response time, because the slowest slave will dictate the I/O scan time for all
others. Remember though, the modbus scanner is allowed to run slower than the
main thread’s scan and therefore the other (non-Modbus IP) I/O drivers will not be
slowed down by a slow ethernet module. (SoftPLC can have multiple I/O drivers
active, only one of which may be modbus master.)

3.4. Network Concerns
The modbus scanner thread issues many of the requests all at once and then services the responses
as they come back asynchronously. This gives the best modbus I/O scan times because all the slaves
are handling their respective requests in parallel. However, it can lead to choppy network traffic
with higher instantaneous bursts of traffic at the start of each I/O scan. For this reason and for
reasons of reliability and overall consistency of performance, it is recommended, but not
mandatory, that a dedicated ethernet be used for the I/O modules and this master, particularly if
you have more than a handful of slave nodes.

8



Chapter 4. Configuration

4.1. Modbus Fields
Modbus commands were originally designed for a Modicon PLC. Therefore they assume 4 different
types of memory regions. Words within these memory addresses are addressed using Reference
Numbers, according to the following table. Basically, the first character of a reference number
gives its region:

Table 5. Memory Regions and Reference Numbers

Memory Region Reference Number Format

Input Discrete (boolean inputs) 1… e.g. 120438

Input Registers (16 bit words) 3…

Output Coils (boolean outputs) 0…

Output Registers (16 bit words) 4…

Modbus TCP protocol includes the original slave id field which was part of the modbus on serial
line protocol. In the case of communications on ethernet, either via TCP or UDP, this field is no
longer used to qualify the actual network node that will respond to a request. The reason for this is
because the IP Address in the ethernet frame serves this purpose. Therefore the "slave id" field
becomes available for another use. This TLM can be configured to use a slave id field of your
choosing for any request.

4.2. Configuration Fields
This TLM is configured using a special configuration editor which is built into TOPDOC NexGen. The
configuration file is organized hierarchically with the following building blocks (elements). Sub
Elements are listed with one of the following characters trailing (suffix), indicating that zero or
more elements must or may be present according to the following interpretation:

• Question Mark (?) ⇒ Optional (zero or one)

• Asterisk (*) ⇒ Zero or more

• Plus Sign (+) ⇒ One or more

• None (no suffix) ⇒ exactly once

Element Name Description Sub Element(s)

ModbusTLM Top most element, holds all
other elements

TealwareDrop*, TCPServer*,
UDPServer*

TealwareDrop A TCPServer that uses
hardware configuration to
generate Modbus requests.

Rack+, Slave+

9



Element Name Description Sub Element(s)

TCPServer A network node that is a
Modbus/TCP slave/server.

Slave+

UDPServer A network node that is a
Modbus/UDP slave/server.

Slave+

Rack A Tealware Rack module+

module A Tealware Module address, CDM?

address Describes the memory areas
that a module references.

CDM Configuration Data Memory

Slave Provides the slave ID within a
Server.

ReadInputDiscretes+,
ReadInputRegisters+,
ReadMultipleRegisters+,
ReadCoils+,
WriteSingleRegister+,
WriteMultipleRegisters+,
MaskWriteRegister+,
ForceMultipleCoils+, WriteCoil+,
ReadWriteRegisters+

ReadInputDiscretes A Modbus request of the same
name

refNum, toBlock

ReadInputRegisters A Modbus request of the same
name

refNum, toBlock+

ReadMultipleRegisters A Modbus request of the same
name

refNum, toBlock+

ReadCoils A Modbus request of the same
name

refNum, toBlock

WriteSingleRegister A Modbus request of the same
name

refNum, fromBlock

WriteMultipleRegisters A Modbus request of the same
name

refNum, fromBlock+

MaskWriteRegister A Modbus request of the same
name. The "or mask" comes
from the value of the fromBlock

refNum, andMask, fromBlock

ForceMultipleCoils A Modbus request of the same
name

refNum, fromBlock

WriteCoil A Modbus request of the same
name

refNum, fromBlock

ReadWriteRegisters A Modbus request of the same
name

refNum, toBlock+, refNum,
fromBlock+

10



Element Name Description Sub Element(s)

refNum A modicon reference number

toBlock Where the response data is to
be written into SoftPLC

fromBlock Where the request data is read
from SoftPLC

(idle or const)?

andMask An integer constant, see the
Modbus specification for the
MaskWriteRegister request. The
orMask is given by the
fromBlock for this request.

idle A list of integer constants. These
data will be sent on a one-shot
basis to the slave when the
Operating Mode calls for
outputs to be idle. Otherwise,
when outputs are not idle, the
live data specified in the
fromBlock are used.


When using NexGen to edit the configuration file, its application specific editor
takes care of enforcing the rules of the configuration file.



Notice that a few of the word oriented requests can take multiple fromBlocks
and/or multiple toBlocks. In the case of read word requests, the multiple toBlocks
are used to split up the response into several SoftPLC memory locations. So you
can route your discrete input data into the INPUT datatable section and your
analog data into an INTEGER datatable section, should they need to be in the same
response. Each toBlock "consumes" some of the response data consecutively,
according to its count field. So the sum of all the count fields should not exceed the
allowed limit for the request’s response. Likewise, for word write requests,
multiple fromBlocks are supported. This allows you to assemble a request using
data from multiple sources within SoftPLC. Your discrete output data can come
from the OUTPUT datatable section and your analog data can come from an
INTEGER datatable section, and be part of the same request. Again, the sum of the
count fields for the fromBlocks cannot exceed the limit for the request. Input data
that you put into the INPUT datatable section with a toBlock will automatically
feature the Input Forcing cabability within the SoftPLC runtime. Output data you
get from the OUTPUT datatable section using a fromBlock will automatically
feature the Output Forcing capability within the SoftPLC runtime. Only those two
sections support forcing, a feature which is mostly helpful for discrete I/O, and not
usually analog data.

Here is a sample screen from the configuration editor showing a few of the elements from the
above table. Notice how they are arranged hierarchically and that each element can "contain" other

11



elements. The rules of containment are given in the table Elements and their Allowed Sub-
Elements:

The element name is at the far left of each row. To the right of the element name is a list of
attributes. The following table lists the allowed attributes for each element type:

Table 6. Elements and their Allowed Sub-Elements

Element Attribute Value Required

ModbusTLM debug 0, 1, or 2, meaning
"enable none, some, or
all debugging print
statements

no, defaults to 0

digInStart The start address for
digital inputs in word
form

yes, defaults to I:0

regInStart The file to be used for
register inputs

yes, defaults to N17

digOutStart The start address for
digital outputs in word
form

yes, defaults to O:0

regOutStart The file to be used for
register outputs

yes, defaults to N7

12



Element Attribute Value Required

TealwareDrop ip The ip address or
machine name of the
server/slave, e.g.
"192.168.12.3" or
"packer12"

yes

connectTimeout Milliseconds to wait for
a connection attempt to
complete

yes

requestTimeout Milliseconds to wait for
a response to a request,
for any request
contained by this
element.

no, defaults to 30

TCPSever ip The ip address or
machine name of the
server/slave, e.g.
"192.168.12.3" or
"packer12"

yes

connectTimeout Milliseconds to wait for
a connection attempt to
complete

yes

requestTimeout Default milliseconds to
wait for a response to a
request, for any request
contained by this
element. May be
overridden by a
specific request’s
requestTimeout

no, defaults to 30

13



Element Attribute Value Required

UDPSever ip The ip address or
machine name of the
server/slave, e.g.
"192.168.12.3" or
"packer12"

yes

requestTimeout Default milliseconds to
wait for a response to a
request, for any request
contained by this
element. May be
overridden by a
specific request’s
requestTimeout.

no defaults to 30

attempts Count how many times
to send the request
before giving up
waiting for a reply.

no, defaults to 3

Rack num This rack’s number
(from 1-4)

yes, automatically
assigned

slots The number of slots
this rack has (4, 6, or 8)

yes

module slot Which slot in the rack
this module is located
at

yes, automatically
assigned

type The name of this
module

yes

address digIn The digital input word
address this module
will reference

no, will be present if
the module calls for it

regIn The register input word
offset this module will
reference

no, will be present if
the module calls for it

digOut The digital output word
address this module
will reference

no, will be present if
the module calls for it

regOut The register output
word offset this module
will reference

no, will be present if
the module calls for it

CDM const values for CDM no, will be present if
the module uses CDM

14



Element Attribute Value Required

Slave id "0" to "255", provides
the slave ID within a
Sever.

yes

<any request> when "run" or "start": run ⇒
when in a run mode,
start ⇒ one shotted
when entering a run
mode

no, defaults to "run"

requestTimeout Milliseconds to wait for
a response to a request

no, defaults to the
setting within the
Server

refNum

toBlock dest a SoftPLC word or bit
address, e.g. "I12:0". If
the enclosing request
reads registers (not
coils or discretes), then
a word address is
required. If instead the
enclosing request reads
coils or discretes, then
a bit address may be
supplied but its bit
component must be
zero.

yes

count the number of 16 bit
words or the number of
bits, depending on the
enclosing request and
the fmt attribute of this
toBlock.

yes

fmt format of the response
data, and determines
the interpretation of
the count attribute. "i2"
or "bit": i2 ⇒ 16 bit (2
byte) signed integers,
bit ⇒ bits.

yes

15



Element Attribute Value Required

fromBlock source a SoftPLC word or bit
address, e.g. "O12:0". If
the enclosing request
writes registers (not
coils or discretes), then
a word address is
required. If instead the
enclosing request
writes coils or
discretes, then a bit
component may be
non-zero.

yes

count the number of 16 bit
words or the number of
bits, depending on the
enclosing request and
the fmt attribute of this
fromBlock.

yes

fmt format of the response
data, and determines
the interpretation of
the count attribute. "i2"
or "bit": i2 ⇒ 16 bit (2
byte) signed integers,
bit ⇒ bits.

yes

andMask


In most cases where an "integer constant" is allowed, for example in the andMask,
idle, or const elements, you may enter that value in either hex or decimal. Hex
numbers start with a leading "0x". Example: "16" or "0x0010" would be OK.

16



Chapter 5. Usage

5.1. Installation
The TLM is named mbipmast.tlm.so and is found as part of the standard SoftPLC 4.x installation in
the /SoftPLC/tlm directory. To use it you merely have to enable it in NexGen’s PLC | MODULES
editor. Then you must edit the xml file MBIPMAST.XML which is the TLM’s configuration file. There
is an application specific editor for this MBIPMAST.XML file within NexGen. It is easy to edit the
configuration file from the PLC | MODULES editor. Simply click on the Configure button after
selecting and enabling Use in the same row as the MBIPMAST TLM.

5.2. Editor Usage

Add button will insert a new element within the selected element. First select the element you wish
to insert into.

Delete button will deleted the selected element. It is only enabled when you are allowed to delete
the selected element.

Move Up button will move the selected element up in the current containment list.

Fetch, Send, Load, and Save all have the same meaning as they do in the NexGen Module editor.
You can see the helpfile for that editor by going to that editor and clicking on Help.

Use Send to transfer the configuration down to the SoftPLC. The next step is to cycle power on the

17



SoftPLC for the changes to take place. As an alternative to cycling power, you may enter "Remote
Program" mode using NexGen, then select "Remote Program" a second time. This psuedo transition
from Remote Program to Remote Program is a signal to the TLM that it should reload its
configuration file. This way you can reconfigure without cycling power, although it does require
you enter "Remote Program" mode (twice!).

With a (or multiple) TealwareDrop present, using Save or Send, the configuration editor will run a
verification check on the address references used in all modules. If any overlaps are found, the
error will be shown; otherwise the editor will then automatically generate Slave elements with
Modbus requests as appropriate for all the modules. These elements cannot be edited, and any
changes that may be needed should be made by editing the actual module element or its address
component. For more information on TealwareDrop elements and their components, see the
Configuration page.

The Module Selection dialog is used to assign Tealware modules to specific slots in a Rack.

The Select Module Type box allows you to choose which types of modules you want to view when
choosing what to add.

The Select Module box shows a list of all modules of the selected type with descriptions.

Configure Values displays the input and/or output areas for the module, as well as a table to
configure the CDM data for the module (if present). Default values are supplied by the
configuration tool and are automatically incremented as modules are added, but these values can
be changed manually at any point. Values for digital addresses are word references, while analog
addresses are input as an offset from word 0 in the file given by the ModbusTLM element.

Ok will add the selected module to the Rack, while Cancel will take no action and close the dialog.

18



The configuration editor also provides a network discovery utility that can detect what Racks and
modules are present in a Tealware Drop. Selecting the desired TealwareDrop element and right-
clicking on it will show the menu options for the network utilities: Configure this TealwareDrop
and BOOTP Protocol. The first option looks on the network at the IP Address specified for the
selected Drop and (if successful) discovers what is present. The components for the TealwareDrop
are then added and configured using the auto-increment functionality to assign addresses for the
modules. Any CDM data must be manually entered.

The second menu option will open a new dialog window that will use the BOOTP Protocol to
configure the selected TealwareDrop with an IP Address.

Right-clicking with the ModbusTLM root element selected will bring up an option to
Discover/Configure all Tealware Drops. This performs the same function as for an individual
element, but will find and add any TealwareDrop elements as well as their componenets.

5.3. Ladder Instructions
This TLM implements a few ladder instructions which are useful for diagnostics and fault
situations.

5.3.1. MBM_GETFAULTMAP

This instruction can be used to fetch a bitmap of up to 128 Servers, which is the maximum number
of Servers supported by this TLM. The bitmap is copied into the Map: parameter which must be a
block of 8 words. If a Server is in the not Present and not Responding state, then its corresponding
bit will be set, else not.

This is a permissive instruction and it will evaulate to false when all the bits in the bitmap are zero,
meaning no faults, all Servers operating fine. If any Server is in the Not Responding state, then its

19



corresponding bit will be set in the bitmap and the instruction will evaluate to true. If it is your
desire to stop the control when a Server fails, then something like the following rung of logic will
fault SoftPLC when any Server fails, since turning on bit S11/6 will initiate a fault shutdown:

Parameter Meaning

Map: A block address of 8 words which will receive a
bitmap of all the configured Servers. We suggest
using a block address in a 'B' datatable file so
that the bit numbers ascend from zero accross
word boundaries, thus corresponding to Servers
in the configuration file. The first listed Server in
the configuration file is 0, the second is 1, etc.

5.3.2. MBM_GETSTATUS

This instruction can be used to fetch 5 status words for each Server in a range of Servers. The range
of Servers can be any number but must be contiguous as defined within the configuration file. The
5 status words for each Server fetched will be contiguous within the Result block parameter, and
their meaning is as follows: (Meanings are for a single specific Server)

Word Index Status Counter Meaning

0 average response time in msecs

1 TCP: no. times the slave timed out or responded
with an exception / UDP: no. retried requests

2 no. of times TLM saw an exception

3 set to modbus commmand code of any that is
answered with an exception

4 set to the modbus exception code, or 0 if no
exception but rather a timeout occurred

This instruction can be used to monitor the health, performance, and connection integrity of any or
all Servers.

20



Parameter Meaning

Result: A block address of 640 (=5*128) words which
will receive a number of groups of 5 words,
depending on how many Servers are requested.
The pattern of 5 words is repeated one after
another according to the Status Counter table
above.

ServerIndex The starting index of the first Server of interest
within the list of Servers given in the
configuration file.

ServerCount The number of contiguous Servers of interest
within the list of Servers given in the
configuration file. In the example rung above,
there will be 11 Servers fetched starting at
Server 0.

5.3.3. MBM_CLEARSTATUS

This instruction clears the 5 status words (to zero) for each Server in a range of Servers. The range
of Servers can be any number but must be contiguous as defined within the configuration file. The
5 status words for each Server cleared will be contiguous within the Result block parameter, and
their meaning is as given in MBM_GETSTATUS

This instruction can be used to get a fresh start, say after power cycling your slaves or modifying
the cabling, when you might want to erase the history of previous problems.

21



Parameter Meaning

ServerIndex The starting index of the first Server of interest
within the list of Servers given in the
configuration file.

ServerCount The number of contiguous Servers of interest
within the list of Servers given in the
configuration file. In the example rung above,
there will be 11 Servers cleared starting at
Server 0.

22



Chapter 6. Debugging
This section gives tips on debugging problems on the Modbus network.

6.1. Isolating the Problem Slave Node
During startup or when troubleshooting a problem node it is usually best to isolate the problem
node. This means look at it in isolation, by making it the only active slave on the network. You can
keep the other slaves connected, but use a temporary configuration file to announce to the TLM
only the node that you are troubleshooting. All other nodes/slaves will simply not be scanned.



Before you start debugging, you should use the configuration editor to Fetch and
then Save your existing full blown configuration. Then on your development
system (Windows computer), temporarily copy the file
\SoftPLC\plc\<PLCNAME>\MBIPMAST.XML to a safe place. Then you can edit the
configuration file temporarily and experiment freely. Later restore by copying
from the safe place back to \SoftPLC\plc\<PLCNAME>\MBIPMAST.XML. Then use
the editor to Load then Send the file back down to SoftPLC. Remember that you
have to restart SoftPLC after each configuration change.

6.2. Enable Debugging
The SoftPLC runtime engine constantly monitors its processes, and 'logs' these observations as
process output. By default, these logs are minimal. However, for troubleshooting purposes, the logs
can provide greater detail.

In the configuration file (MBIPMAST.XML), there is the top most element ModbusTLM and its
attribute debug.

• A debug value of "0" represents the minimal detail to be logged.

• A debug value of "1" increases the detail logged.

• A debug value of "2" adds timing information to the lower level values.

6.3. View Debugging
Viewing these logs shall be completed at the command prompt of the SoftPLC system. To access the
command prompt, log into the SoftPLC by either:

• (from Windows) use third-party 'PUTTY' application

• (from Linux) use SSH from Terminal application

• (TOPDOC 5.x) use Remote Console feature in the 'PLC' window


Default login credentials are as follows:
user: root
password: softplc

23



Once logged in, the logs can be viewed by executing one of the following:
(the '#' represents the prompt, and is not typed)

• For SoftPLC firmware 4.x

◦ # logread

• For SoftPLC firmware 5.x

◦ # journalctl -u softplc

▪ You may need to use the arrow keys to scroll down to the end of the logs. The last logs
are the most recent.

6.4. Direct Debugging to Text File
The previous sections have shown how to view the logs from the command prompt. However,
recording the logs to text file format is, in the least, efficient for receiving support. Accomplishing
this, much like viewing the logs, is firmware dependent (see following sections). Once the text file is
created, it can be transferred via (S)FTP to the TOPDOC machine. A detailed explanation of (S)FTP
transfers can be found in the TOPDOC User’s Guide.

6.4.1. Direct Debugging output into a text file (SoftPLC 4.x)

1. Log into SoftPLC using either a) PUTTY from Windows or b) using ssh from Linux or c) at the
command prompt of the SoftPLC system.

2. Run this command:
# /etc/init.d/softplc.sh stop

3. Change into the /SoftPLC/run directory:
# cd /SoftPLC/run

4. You can run SoftPLC from the command prompt now and redirect its output to an arbitrary file
(named out.txt here). We put that file into the RAM disk which is anchored in the /tmp directory.
# ./runsplc > /tmp/out.txt

5. Let this run for 5-60 seconds, then press control-C. Now you have the output captured in file
/tmp/out.txt, each request-response transaction will be captured in that file.

6. You can look at the file using the program named "less".
# less /tmp/out.txt
You can look at this output with the Modbus TCP Specification, and the manual for your I/O
module in hand. Press ESC when done.

7. You can make configuration file changes and Send them down to SoftPLC. Then merely repeat
the part of this process starting at step 4 above.

8. When done, remember to set debug back to "0", then you can start SoftPLC as a daemon either
by a) power cycling the box or b) doing the following:
# /etc/init.d/softplc.sh start

24



6.4.2. Direct Debugging output into a text file (SoftPLC 5.x)

1. Log into SoftPLC using either a) the remote console feature in TOPDOC’s PLC window, b) PUTTY
from Windows, or c) using ssh from Linux.

2. Run this command:
# systemctl stop softplc

3. Change into the /SoftPLC/run directory:
# cd /SoftPLC/run

4. You can run SoftPLC from the command prompt now and redirect its output to an arbitrary file
(named out.txt here). We put that file into the RAM disk which is anchored in the /tmp directory.
# ./runsplc > /tmp/out.txt

5. Let this run for 5-60 seconds, then press control-C. Now you have the output captured in file
/tmp/out.txt, each request-response transaction will be captured in that file.

6. You can look at the file using the program named "less".
# less /tmp/out.txt
You can look at this output with the Modbus TCP Specification, and the manual for your I/O
module in hand. Press ESC when done.

7. You can make configuration file changes and Send them down to SoftPLC. Then merely repeat
the part of this process starting at step 4 above.

8. When done, remember to set debug back to "0", then you can start SoftPLC as a daemon either
by a) power cycling the box or b) doing the following:
# systemctl start softplc

25



Chapter 7. Appendix A

7.1. MBIPMAST.XML DTD
The XML grammar supported by the MBIPMAST.XML configuration file is given in the following
modbusIP.dtd file. The latest version of this file is kept within the topdoc.jar file, and is named
modbusIP.dtd:

Sample MBIPMAST.XML DTD

<?xml version='1.0' encoding='UTF-8'?>
<!--
    DTD for a ModbusTLM

?  Question Mark Optional (zero or one)
*  Asterisk      Zero or more
+  Plus Sign     One or more
-->

<!ELEMENT ModbusTLM (TCPServer|UDPServer)*>
<!ELEMENT TCPServer ( Slave+)>
<!ELEMENT UDPServer ( Slave+)>
<!ELEMENT Slave (ReadInputDiscretes|ReadInputRegisters|ReadMultipleRegisters|
        ReadCoils|WriteSingleRegister|WriteMultipleRegisters| 
        MaskWriteRegister|ForceMultipleCoils|WriteCoil|ReadWriteRegisters)+>
<!ELEMENT ReadInputDiscretes (refNum, toBlock)>
<!ELEMENT ReadInputRegisters (refNum, toBlock+)>
<!ELEMENT ReadMultipleRegisters (refNum, toBlock+)>
<!ELEMENT ReadCoils (refNum, toBlock)>
<!ELEMENT WriteSingleRegister (refNum, fromBlock)>
<!ELEMENT WriteMultipleRegisters (refNum, fromBlock+)>
<!ELEMENT MaskWriteRegister (refNum, andMask, fromBlock)>
<!ELEMENT ForceMultipleCoils (refNum, fromBlock)>
<!ELEMENT WriteCoil (refNum, fromBlock)>
<!ELEMENT ReadWriteRegisters (refNum, toBlock+, refNum, fromBlock+)>

<!--
The bit component of a dest address must be zero.
-->
<!ELEMENT toBlock EMPTY >

<!-- fromBlock: 
When fromBlock source="const", then a <const> element is required. If instead,
when fromBlock source="N7:0" (any address), then the <idle> *may* be present.
The bit component of a source address may be non-zero.
-->
<!ELEMENT fromBlock (const|idle)? >
<!ELEMENT refNum (#PCDATA)>
<!ELEMENT idle (#PCDATA)>

26



<!-- const elements are used when you want non-variable data written as 
part of a command, namely in an initialization phase when when="start"
-->
<!ELEMENT const (#PCDATA)>
<!ELEMENT andMask (#PCDATA)>

<!ATTLIST ModbusTLM
                        debug           CDATA   #IMPLIED
>                        

<!ATTLIST TCPServer
                        ip              CDATA   #REQUIRED
                        connectTimeout  CDATA   #REQUIRED
                        requestTimeout  CDATA   #IMPLIED                        
>
<!ATTLIST UDPServer
                        ip              CDATA   #REQUIRED
                        requestTimeout  CDATA   #IMPLIED
                        attempts        CDATA   #IMPLIED                          
>       
<!ATTLIST Slave
                        id              CDATA   #REQUIRED
>       
<!ATTLIST ReadInputDiscretes
                        when            (run|start) "run"
                        requestTimeout  CDATA   #IMPLIED                        
>       
<!ATTLIST ReadInputRegisters
                        when            (run|start) "run"
                        requestTimeout  CDATA   #IMPLIED                        
>                       
<!ATTLIST ReadMultipleRegisters 
                        when            (run|start) "run"
                        requestTimeout  CDATA   #IMPLIED                        
>
<!ATTLIST ReadCoils 
                        when            (run|start) "run"
                        requestTimeout  CDATA   #IMPLIED                        
>
<!ATTLIST WriteSingleRegister 
                        when            (run|start) "run"
                        requestTimeout  CDATA   #IMPLIED                        
>       
<!ATTLIST WriteMultipleRegisters 
                        when            (run|start) "run"
                        requestTimeout  CDATA   #IMPLIED                        
>       
<!ATTLIST MaskWriteRegister
                        when            (run|start) "run"
                        requestTimeout  CDATA   #IMPLIED                        

27



>       
<!ATTLIST ForceMultipleCoils 
                        when            (run|start) "run"
                        requestTimeout  CDATA   #IMPLIED                        
>               
<!ATTLIST WriteCoil 
                        when            (run|start) "run"
                        requestTimeout  CDATA   #IMPLIED                        
>
<!ATTLIST ReadWriteRegisters 
                        when            (run|start) "run"
                        requestTimeout  CDATA   #IMPLIED                        
>
<!ATTLIST toBlock 
                        dest            CDATA           #REQUIRED
                        count           CDATA           #REQUIRED
                        fmt             (i2|bit)        #REQUIRED
>       
<!ATTLIST fromBlock 
                        source          CDATA           #REQUIRED
                        count           CDATA           #REQUIRED
                        fmt             (i2|bit)        #REQUIRED
>

28


	ModbusIP Master for SoftPLC® Runtime
	Table of Contents
	Chapter 1. Overview
	1.1. Introduction
	1.2. Definitions
	1.3. Concepts
	1.4. Features
	1.5. Requirements

	Chapter 2. Terms of Use
	Chapter 3. I/O Scanning
	3.1. Operating Modes and States
	3.2. Driver State Transitions
	3.3. Scan Synchronization
	3.4. Network Concerns

	Chapter 4. Configuration
	4.1. Modbus Fields
	4.2. Configuration Fields

	Chapter 5. Usage
	5.1. Installation
	5.2. Editor Usage
	5.3. Ladder Instructions
	5.3.1. MBM_GETFAULTMAP
	5.3.2. MBM_GETSTATUS
	5.3.3. MBM_CLEARSTATUS


	Chapter 6. Debugging
	6.1. Isolating the Problem Slave Node
	6.2. Enable Debugging
	6.3. View Debugging
	6.4. Direct Debugging to Text File
	6.4.1. Direct Debugging output into a text file (SoftPLC 4.x)
	6.4.2. Direct Debugging output into a text file (SoftPLC 5.x)


	Chapter 7. Appendix A
	7.1. MBIPMAST.XML DTD


